The University of Jordan **School of Engineering**

Department	Course Name		Course Number	Semester			
Mechanical Engineering	Thermodynamics	I	0904341				
2019 Course Catalog Description							
Thermodynamic concepts and definitions, states, properties, systems, control volume, processes, cycles, and units, pure substances, equation of states, table of properties, work and heat, the first law, internal energy and enthalpy, conservation of mass, SSSF and USUF processes, the second law, heat engines and refrigerators, reversible processes, Carnot cycle, entropy, Clausius inequality, principle of the increase of entropy, Efficiencies.							
Instructors							
Name	E-mail	Sec	Office Hours	Lecture Time			
	E-man	Sec					

Text Books Text book 1 Text book 2 Thermodynamics /An Engineering Approach Title Y. Cengel and M. Boles, Author(s) McGraw-Hill, 2011, 6th. or 7th.edition, SI units Publisher, Year, Edition

References Fundamentals of Thermodynamics, R. Sonntag, C. Borgnakke, and G. Van Wylen, sixth **Books** edition, 2003, (or latest), John Wiley and Sons, Inc. USA. 2. Fundamentals of Engineering Thermodynamics, H. Shapiro and M. Moran, Fifth edition, 2004, (or latest), John Wiley and Sons, Inc. USA. Journals

Internet links

Prerequisites					
Prerequisites by topic 1. Differentiation and integration.					
	2. Work and Heat.				
	3. Concepts of velocity, acceleration, force and energy.				
	4. 4. Newton's laws of motion.				
Prerequisites by course	General Physics (2) 0302102				
Co-requisites by course					
Prerequisite for	1. Thermodynamics (2)				
_	2. The amount of Lab				

2. Thermodynamics Lab.

Topics Covered						
Week	Topics	Chapter in Text	Sections			
1	Introduction and Basic Concepts	Chapters 1	1-1 ,1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-9, 1-11			
2	Energy, Energy Transfer, and General Energy	Chapters 2	2-2, 2-3, 2-6, 2-7			
	Analysis					
3	Properties of Pure Substances	Chapters 3	3-2, 3-3, 3-4, 3-5, 3-6			
4	Energy Analysis of Closed Systems	Chapters 4	4-1, 4-2, 4-3, 4-4, 4-5			
5	Mass and Energy Analysis of Control Volumes	Chapters 5	5-1, 5-2, 5-3, 5-4, 5-5			
6	The 2 nd . Law of Thermodynamics	Chapters 6	6-1, 6-2, 6-3, 6-4, 6-5, 6-6, 6-7, 6-8, 6-9,			
			6-10, 6-11, 6-12			
7	Entropy	Chapters 7	7-1, 7-2, 7-3, 7-7, 7-9, 7-10, 7-11, 7-12,			
			7-13			

	Mapping of Course Outcomes to ABET Student Outcomes
SOs	Course Outcomes

- 1. Ability to recognize closed and open, steady and non-steady systems, properties and states of ideal gases.
- 2. Ability to solve pressure and manometry problems.

1

- 3. Apply 1st. law of thermodynamics in its various forms to calculate energy, work and heat transfer, and apply energy conversion efficiencies for various systems.
- 4. Ability to calculate various properties of pure substance and ideal gas, applying that in the equation of state, and various processes.
- 5. Ability to analyze mass and energy changes of systems and control volumes for steady and non-steady systems.
- 6. Ability to calculate entropy changes for pure substance in various processes, and calculating work and heat in those processes.
- 7. Ability to use 1st and 2nd law analysis for the calculation of reversible work, irreversibility and 2nd, law efficiency
- 8. Ability to apply 1st law analysis on heat engines, refrigerators and heat pumps.

9. Ability to apply 2nd law analysis on heat engines, refrigerators and heat pumps.								
Evaluation								
Assessment Tools Expected Due Date						Weight		
Class participation				10%				
First Exam							20%	
Second Exam				20%				
Final Exam							50 %	
Contribution of Course to Meet the Professional Components								
Building the fundamental basic concepts of thermodynamics and provides an ability to solve common engineering problems, including problems involving heat engines, refrigeration machines and heat pumps.								
Relationship to Student Outcomes								
SOs	1	2	3	4	5	6	7	
Availability	X	•						

Tivanability	71			ļ		
Relationship to Mechanical Engineering Program Objectives (MEPOs)						
MEPO1		MEPO2	MEPO3	MEPO4	N	IEPO5

ABET Student Outcomes (SOs)

- An ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- An ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3 An ability to communicate effectively with a range of audiences
- An ability to recognize ethical and professional responsibilities in engineering situations and make informed 4 judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
- 5 An ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
- 6 An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
- 7 An ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Updated by ABET Committee, 2021